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Abstract. Photo-realistic images generated using path tracing often4 4

contain a significant amount of noise as it involves Monte-Carlo inte-5 5

gration. Raising the total number of samples in an image reduces the6 6

amount of noise but increases the computational cost of the algorithm.7 7

It is desirable to reduce the noise and generate high-quality renders at a8 8

low computational cost. We present a lightweight novel MLP based filter9 9

architecture that denoises images rendered at 1 sample per pixel and its10 10

corresponding normal. Furthermore, this lightweight network makes use11 11

of fragment shaders and delivers a run-time performance of roughly 1112 12

frames per second. This architecture significantly reduces the computa-13 13

tion cost required to render high-quality images. Our network reduces14 14

noise by approximately 40% and improves the resulting structure by15 15

over 200%. We found that using the corresponding normal maps of the16 16

input image in training significantly enhances the performance. There-17 17

fore, we believe extension based on the concepts from computer graphics18 18

can improve the performance of denoising networks.19 19

Keywords: Ray Tracing · Image Denoising · Neural Networks.20 20

1 Introduction21 21

Path tracing is the state of the art method for generating photo-realistic images22 22

in computer graphics and has been for many years [1]. In its most common23 23

form, it is a method based on Monte Carlo integration, which works by shooting24 24

rays from the camera into the scene, randomly bouncing them off surfaces, and25 25

sampling light sources to iteratively approximate the brightness received by each26 26

pixel of our virtual camera [1]. Intuitively it traces the path a ray of light would27 27

take in the real world on its way from a light source to the camera, only in28 28

reverse.29 29

To produce high-quality renders, these methods perform sampling on each30 30

pixel and average the incoming radiance from all samples on that pixel. Despite31 31

being a robust method, i.e., being free from bias, it requires large computation32 32

time, and the computation explodes with the increase in resolution. Therefore,33 33

computer vision algorithms are applicable in reducing the noise for a rendered34 34

image obtained using low sample counts. In this report, we highlight the contri-35 35

bution that allows us to denoise the input images rendered using 1 sample per36 36

pixel (SPP) in real-time. The filter we use is a multi-layer perceptron network37 37

that is lightweight and can run on a single fragment shader.38 38
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2 Prior Work39 39

Chaitanya et al. [2] described an Autoencoder with recurrent connects that im-40 40

proved the temporal stability for sequences of sparsely sampled input images.41 41

They attempt to remove a class of noise present in Monte Carlo rendering by42 42

reconstructing the global illumination in the scene, using Convolutional Neural43 43

Networks. They demonstrate that their method models relationships, such as44 44

depth and normals, with the input channels.45 45

Müller et al. [4] in their paper study non-linear independent components46 46

estimation (NICE) and its extensions to generate samples in Monte Carlo inte-47 47

gration using deep neural networks. They demonstrate learning of joint path-48 48

sampling densities in the primary sample space and importance sampling of49 49

multi-dimensional path prefixes. Their approach extracted and leveraged the50 50

conditional directional densities for path guiding. In a way, their experiments51 51

revealed that Neural path guiding performed on-par or better than other path52 52

tracing techniques at equal sample count.53 53

Zhang et al. in [6] introduced the Denoising Convolutional Neural Network54 54

(DnCNN) for denoising images. Their experiments demonstrate that the DnCNN55 55

can handle Gaussian noise of unknown noise level (blind Gaussian denoising).56 56

They adopt the residual learning formulation to train a residual mapping R(y) ≈57 57

v, and then x = y−R(y) gives the predicted noise for an input given by y = x+v.58 58

They address various problems such as Gaussian denoising, single image super-59 59

resolution, and JPEG image deblocking.60 60

Isola et al. in [3] illustrate their model pix2pix, a conditional GAN, for image-61 61

to-image translation tasks. They validate their model on settings in graphics62 62

(photo generation), and vision (semantic segmentation). Community access to63 63

the pix2pix model further proved its robustness as a general-purpose solution64 64

for image-to-image translation tasks.65 65

We take inspiration from these works to construct a lightweight network66 66

that can be a part of a graphics pipeline and fit in a fragment shader, and can67 67

perform on-par or close to the state-of-the-art networks. To this end, we propose68 68

the “Wait a minute network” (WAMnet). WAMnet is a multi-layer perceptron69 69

network that is scene-specific, fits in a pipeline, and can generate a 3D scene in70 70

real-time. Note that while we do not train our model on different orientations,71 71

the pipeline also generates the scene for unknown orientations equally good as72 72

the scene that was trained.73 73

3 Architecture of WAMnet74 74

Given an NxN patch from a noisy input image as well as the corresponding75 75

normal map, our network predicts the color of the center pixel of that chunk.76 76

This allows the network to take neighbouring pixels, information from the normal77 77

maps and inferred surface properties into account. The network, WAMnet, is a78 78

5 layer Multi-layer perceptron each with hidden layers consisting of 32 neurons.79 79

These neurons are activated by a periodic activation function, inspired by the80 80

SiREN network [5]. The overall architecture is depicted in Fig. 1.81 81
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Fig. 1: Architecture of WAMnet

4 Experiments82 82

4.1 Dataset83 83

We start our experiment by designing a custom scene in a fragment shader. Using84 84

this custom scene, we render our training sets as well as testing sets. The training85 85

set consists of 1000 rendered images along with their corresponding normals. The86 86

input image is rendered at 1 SPP while the ground truth is rendered at 102487 87

SPP. Our testing dataset consists of 100 rendered images at the same settings as88 88

the training set. For both testing and training set, we set up our image resolution89 89

to be 1024× 1024 shown in Appendix A.90 90

4.2 WAMnet91 91

We train our model for a single scene using a single pair of input and output92 92

images. For each scene, we create 20, 000 training samples by randomly sampling93 93

an input chunk of size 12×12 from 1024×1024 input image. Out of these 20, 000,94 94

we pass 10, 000 random chunks to our network in one iteration. We repeat the95 95

training for 20, 000 iterations. This approach of training our neural net on a96 96

single scene requires approximately 90 secs for a given scene. We designed a97 97

series of experiments to evaluate the performance of our model.98 98

First, we train WAMnet by giving 3 channel (RGB) input chunk and its corre-99 99

sponding output chunk (WAMnet\normals). In another experiment, we append100 100

the normal map generated during the pipeline to our input chunk creating a 6101 101

channel input chunk and compare with the same output chunk (WAMnet). We102 102

noticed considerable improvements in the geometry of the shapes in the scene103 103

when using normals. When trained without a normal map, WAMnet fails to104 104

maintain the sharp geometry and works closer to a blur filter. In both cases, we105 105

use Adam optimizer for minimizing the mean squared error (MSE) loss described106 106
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as:107 107

L(y, ỹ) =
1

N

N∑
i=1

||(y − ỹ)||2 (1)

4.3 pix2pix108 108

We split our dataset into smaller patches (128×128) and pass it to the network.
We use the U-Net that is 6 layers deep and also takes Gaussian noise (z) as
input to prevent deterministic outputs, as our encoder-decoder architecture for
our generator (G). The discriminator (D) architecture is the PatchGAN network,
which is a convnet and is 3 layers deep. Note that we are trying to optimize our
architecture to run on a fragment shader and hence we design our models as
light as possible. We primarily use MSE (L2 norm) and reconstruction loss (L1
norm) for our custom loss function. We observed that penalizing the MSE and
reconstruction loss in the ratio of 1:100 gave the best results. Our custom loss
function is described below:

LD =
1

2
(L(D(x), targetreal) + L(D(G(x, z)), targetfake))

LG = L(D(G(x, z)), y)

LL1 =
1

N

N∑
i=1

||(D(G(x, z))− targetreal)||

LGAN = LG + 100 ∗ LL1

4.4 DnCNN109 109

We resize our dataset from its original 1024 × 1024 to 256 × 256 to fit in a110 110

GPU. The DnCNN architecture we use is a convnet of depth 16. [6] describe the111 111

DnCNN architecture to be able to learn the residual map R(y) ≈ v, where v is112 112

the noise. Then, the output image is calculated by x = y−R(y), where x is the113 113

clean image. We adopt the averaged MSE between the desired and estimated114 114

residual mappings as the loss function:115 115

L(φ) =
1

2N

N∑
i=1

||(R(yi, φ)− (yi − xi))||2 (2)

5 Results116 116

5.1 Evaluation Metrics117 117

To assess the performance of the neural network we employ the following met-118 118

rics: MSE, PSNR, and SSIM. By definition, the lower the MSE, the higher the119 119

PSNR, and closer the predicted image is to the ground truth. SSIM, which stands120 120

for Structural Similarity Index Measure, compares the luminance, contrast, and121 121

structure between the predicted image and the ground truth. The SSIM score is122 122

present in [0, 1] and the closer the score is to 1, the better the image.123 123
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Table 1: Performance comparison with relevant methods. Please note de-
spite pix2pix showing superior metrics, the overall results introduces unnecessary
artifacts.

Test Network MSE PSNR SSIM

Input Images 82.93 66.67 0.21

DnCNN 79.03 67.16 0.44

WAMnet 48.04 72.17 0.68

pix2pix 39.28 74.18 0.70

(a) Input (1 SPP) (b) Predicted result (c) GT (1024 SPP)

Fig. 2: Result showing prediction from WAMnet

5.2 Performance124 124

Table 1 shows the performance of the networks that we trained on our dataset.125 125

We can observe that the input images rendered at 1 SPP have a high MSE, low126 126

PSNR, and poor SSIM score. Our input images fail to maintain the structure127 127

of the desired scene view. Given such a scene, our network can reconstruct the128 128

geometry (edges of the mini cubes are clear) and denoise it resulting in a struc-129 129

ture that is 68% similar to the ground truth. We also observe that using normal130 130

maps in the input sequence reconstructs better than in the absence of normals.131 131

Furthermore, our network outperforms DnCNN by a significant margin in132 132

all three metrics. Finally, pix2pix performs better than WAMnet by 2%. While133 133

this is the case, the complexity of the pix2pix model poses implicit constraints134 134

on the fragment shader and hence is unsuitable for our pipeline. Moreover, since135 135

we train pix2pix on patches sampled from the input images, we observe blocking136 136

artifacts when we reconstruct the image from the noisy input image. In this sense,137 137

WAMnet is not only good but also consistent and fits our purpose perfectly.138 138

Fig. 2 shows how our network can retain the scene geometry as well as soft139 139

shadows. Since we feed in the normal map, we believe that the network is able140 140

to estimate the light contribution on the missing pixels using the information141 141

from noisy input as well as the normal map.142 142

Fig. 3 compares results of WAMnet, pix2pix and DnCNN for one image from143 143

our test set. We observe that WAMnet and pix2pix perform extremely better144 144
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(a) WAMnet (b) pix2pix (c) DnCNN

Fig. 3: Comparison of predictions with different methods

than DnCNN. While pix2pix looks better in low resolution, the inherent block145 145

artifacts that come as a result of patch training are visible in higher resolutions.146 146

6 Further Studies147 147

We also conducted further experiments to test out the generalization capability148 148

of our network. While networks such as DnCNN and pix2pix generalize for the149 149

entire training set and are capable of working independently on the test set,150 150

WAMnet is a more specialised network and can only work on the scene that it151 151

is trained on. Considering the fact that the model contains only 5 layers, while152 152

compared to the deep layers in pix2pix and DnCNN, the trade-off is justified as,153 153

just by training on one particular scene for 90 seconds, our pipeline can generate154 154

a 3D scene that varies in time at 11 frames per second.155 155

Moreover, the resulting scene is comparable to a scene that is rendered at 30156 156

SPP. To put it in perspective, the renderer takes about a minute to generate an157 157

image at 1 SPP, while it takes about 7 minutes to generate an image at 30 SPP.158 158

Our pipeline aims to achieve generating a scene at higher SPP given 1 SPP (the159 159

lowest possible).160 160

6.1 Different lights for training and testing161 161

Instead of training and testing on the same scene with the same light, we changed162 162

the light colors on training as well as testing the image. For the same scene when163 163

trained on an arbitrary set of light colors A, and tested on a different set of light164 164

colors B, we noticed that our network fails to reproduce the original color. This165 165

limitation arises from the size of our network. The results can be observed in166 166

Fig. 4167 167

6.2 Training on multiple lights168 168

We also conducted experiments where we trained on different sets of lights. When169 169

trained on multiple sets of lights, we found that our model tries to produce the170 170
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(a) Input (1 SPP) (b) Predicted result (c) Original (1024 SPP)

Fig. 4: Result showing effect of different colors for training and testing on same
scene

(a) Input (1 SPP) (b) Predicted result (c) Original (1024 SPP)

Fig. 5: Result showing effect of use of multiple colors in training phase

colors but is not able to reproduce them successfully. The visualization can be171 171

seen from Fig. 5172 172

7 Discussion173 173

From our experiments, we notice that passing in the normals allows the MLP174 174

to learn the scene geometry. Since we were constrained to run it on a fragment175 175

shader as a part of our graphics pipeline, we didn’t go for large and deep net-176 176

works as they can not be compiled using the fragment shader. Therefore, we177 177

sacrifice generalization and work on specialization because of the budget con-178 178

straint imposed by the engineering design.179 179

8 Conclusions180 180

With our work, we have successfully designed a neural network solution that is181 181

capable of running inside a fragment shader as a part of a graphics pipeline. Our182 182

network is compact and fast enough to run inside the GPU without using any183 183

interface from CUDA API. Since it is not possible to address a variety of scenes,184 184

we have traded generalization for specialization and fast training time. Because185 185
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of the short training time, our network can fit the cases where it is expensive to186 186

generate the animation for a given scene at high quality.187 187

9 Future Works188 188

Our work is one of its kind to run a denoising network inside a fragment shader.189 189

From this work, we notice that running a neural network requires extensive190 190

optimization and we encourage the readers to pursue this path. If it is not191 191

possible to run on the fragment shader, one can optimize the graphics pipeline192 192

by introducing CUDA calls in between. By doing so, one can run large models193 193

that can generalize to a large variety of scenes. Further, we also noticed that to194 194

achieve a significant performance gain, one shouldn’t just be limited to vision195 195

algorithms but can also introduce the concepts from graphics. One such direction196 196

is passing the ray direction along with normals and the input image.197 197
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Fig. 6: Input Images

Fig. 7: Normal Images

Fig. 8: Output Images
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